
Build OpenSolaris Packages

Using pkgbuild/pkgtool

Author : Shivakumar GN

Document Version 0.2, 05-Aug-2007

Released under Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0)

Table of Contents

 0. ABOUT THE DOCUMENT ... 2

 1. BACKGROUND INFORMATION TO PKGBUILD ... 3

 2. STAGES IN PACKAGE CREATION .. 4

 3. SPEC FILE STRUCTURE ... 4

 4. WORKING OF PKGTOOL/PKGBUILD .. 7

 5. HOW TO : STEP-BY-STEP GUIDE TO YOUR FIRST PACKAGE .. 8

 5.1. INSTALLING THE REQUIRED PACKAGING TOOLS ... 8
 a) Create a non-root user for building packaging ... 8
 b) Install the JDS Common Build Environment(JDS CBE) ... 8

 5.2. SETUP THE CONFIGURATION FOR THE PACKAGING TOOLS .. 9
 a) Create the configuration file for the packaging tools .. 9

 5.3. AUTHOR THE SPEC FILE .. 9
 5.4. TEST THE OUTPUT PACKAGE .. 10

 a) Outputs created by pkgtool/pkgbuild .. 10
 b) Install the package & use the software ... 10

 6. REFERENCES ... 10

 7. APPENDICES .. 11

 7.1. USEFUL PKGTOOL COMMANDS ... 11

 7.2. USEFUL PKGBUILD COMMANDS .. 11

 7.3. SPEC FILE AUTHORING – CONVENTIONS & GOOD PRACTICES .. 12

 7.4. TOPICS NOT COVERED IN REQUIRED DETAILS ... 12

 7.5. CREATING & APPLYING PATCHES .. 13

 7.6. GNU AUTO TOOLS .. 13

 7.7. BUILD ISSUES ON OPENSOLARIS PLATFORM ... 13

 7.8. SVR4 PACKAGING DETAILS ... 13

 7.9. SPECS FOR PKGBUILD V/S RPM SPECS .. 13

http://www.opensolaris.org/os/licensing

 0.About the document
The objective of this document is to enable a user of OpenSolaris based distro (eg: Belenix, Solaris
Express, etc) to create software packages for their platform.

After going through this document, the users will be able create SVR4 packages by authoring spec
files for the software.

Basic user level experience on a OpenSolaris system or Linux system is assumed.

The document is intended to be as simple as possbile.

For any technical queries related to pkgtool/pkgbuild, direct your queries to desktop-discuss at
opensolaris dot org.

Any feedback about this document may be sent to the author: shivakumar dot gn at gmail dot com

The Appendices have supplementary details of tools/topics that are often encountered when building,
creating packages (not all appendices are currently complete in the document).

Disclaimer : This documentation is for information only and the responsibility of usage lies solely with
the user of the document.

Change History:

Version Date Description

0.1 31-July-2007 Draft version. Used in a local forum. Not released online.

0.2 05-Aug-2007 Updated with comments from Mr.Laszlo Peter (the author of pkgbuild/pkgtool)

 1.Background information to pkgbuild
Package management system makes the tasks such as installation/uninstallation/upgrade of the
software relatively easy to manage.

A typical source code goes through the compiling/linking stage for binaries to get created and then
through packaging stage for the packages to get created. (Packages can be either for sources or for
binaries)

Source_Code --building--> Binaries --Packaging--> Software_Packages

A easy mechanism to perform the above sequence of things would be nice to have. The requirements
such a mechanism should satisfy are:

● Creation packages starting from pristine sources

● Package creation is repeatable in a consistent manner (success guaranteed every time)

RPM is one such packaging mechanism that has been very popular in the GNU/Linux world. Many of
the linux installables are distributed in the form of rpm packages.

The rpm packages are created using the rpmbuild tool. To create a package, the developer authors a
.spec file having information about source-code location, build instructions, deployment instructions,
etc and then uses this spec as an input to the rpmbuild to create the rpm packages. Owing to rpm's
popularity, many of the open source software is available along with rpm spec files.

SVR4 packaging system is the likely packaging system available as default on an OpenSolaris based
distro. If a tool that can use the rpm spec files and create a SVR4 packages were to be available, it
would make it possible to create SVR4 packages for the wide range of softwares that already have
rpm spec files. Even for those for which rpm specs do not exist, a spec file can be easily written from
scratch using the well known approach.

The pkgbuild is one such tool. It is a drop in replacement for rpmbuild. This tool is available as part of
the JDS CBE1 (JDS Common Build Environment). In addition to pkgbuild JDS_CBE also provides
another tool pkgtool that uses pkgbuild and extends the capability

– to get sources from ftp/http sites if not available on the system (in the local repository)

– to install the packages onto the system after package creation

This document describes the use of pkgtool & pkgbuild for SVR4 package creation.

Note that while having an rpm spec file for the source code to start with is useful, it is not mandatory.
One can write a spec file from scratch and use it with pkgtool/pkgbuild.

Many people have already authored many spec files (over 400 as of date) and these are available at
http://pkgbuild.sourceforge.net/spec-files-extra. The contributed files maybe downloaded via
subversion access

svn co https://pkgbuild.svn.sourceforge.net/svnroot/pkgbuild/spec-files-extra/trunk SFE

Make use of the already contributed spec files for your purpose

Also as and when you author spec files for your favourite softwares consider contributing them to this
repository.

1 Available at http://www.opensolaris.org/os/community/desktop/communities/jds/building

http://pkgbuild.sourceforge.net/spec-files-extra
http://www.opensolaris.org/os/community/desktop/communities/jds/building

 2.Stages in Package Creation
The below diagram shows the stages involved in creating a software package.

A developer needs to perform these stages manually. By the end of stage (6) the developer should be
having 2 outputs available, the set of patches required for successfully building and a spec file with
instructions that can help create a package from the sources.

 Identify the source code location (http/
ftp)

 Download the sources
 Attempt building the source. If build

fails, make necessary corrections and
repeat build till success. Create
patches based on the code change
required for successful build

 Author the spec file that can perform
stages (1) to (4)

 Based on instructions to install the
software, include install instructions
also into the spec file (stage 5)

 Use the pkgtool with the spec to
perform stages (1) to (5)

 Go through the directory structure of
the installed dir, and identify the final
set of files/dirs along with required
ownership. Include these instructions
into the spec file

 Using the spec file, create a package.
 Test the package by installing it and

verify the files/dirs/permissions etc
after installation.

 Incase of any errors re-visit stage 6
and repeat the exercise

The stages that take up the effort is shown in the form of 2 circles in the figure above

 Creating binaries (stage 2 to stage 4): One may encounter problems due to various reasons while
building the application. Suitable code corrections need to be made and build is to be re-
attempted. This cycle of “identifying corrections - patching – building” takes up bulk of the effort
among all the stages

 Identifying files/dirs & ownership/permissions: Here again there is a small iteration possible if the
spec author doesn’t get the details right the first time.

The above diagram shows the steps involved in creating a software package.

 3.SPEC file structure
The spec file is the artifact that has all the necessary information for pkgtool to create a binary
package from the sources.

The example spec file below provides the information about the structure of a spec file. It is for the
Geany software. It has annotations marked in blue color. Note the point below before going through

the spec file structure.

Note :

The below example is a monolithic spec file to illustrate the structure of the spec file only.

This is not to be considered to represent a good way to organize a spec file. Refer to the appendix
section “Spec file authoring – conventions & good practices” for some pointers

For an example of a good spec file, take a look at the ones at the SFE repository
(https://pkgbuild.svn.sourceforge.net/svnroot/pkgbuild/spec-files-extra/trunk)

===
Spec File for Geany
===

Custom variable definitions

%define _basedir /usr/local
%define _prefix %{_basedir}
%define _bindir %{_prefix}/bin

%define name geany
%define version 0.11
%define release 1

%include Solaris.inc

%{_topdir} is by default set to RPM_BUILD_ROOT
Default path for RPM_BUILD_ROOT is /var/tmp/pkgbuild-{username}
Install the software here as part of package building steps

===
SVR4 required tag definitions
===

SUNW_BaseDir: %{_basedir}
SUNW_Pkg: SFEgeany
SUNW_ProdName: SUNW_Geany
SUNW_ProdVers: 0.11
SUNW_Category: Development,Editors,IDE
SUNW_HotLine: geany-subscribe@uvena.de
SUNW_MaxInst: 1
SUNW_PkgList: 0
SUNW_Rev: 1
#SUNW_Loc
#SUNW_Copyright:
#SUNW_PkgType: usr

Preamble

Name: %{name}
Summary: Geany - Light weight text editor/IDE
Version: %{version}
Release: %{release}
License: GPLv2
Group: Development/Tools
Source: http://files.uvena.de/geany/%{name}-%{version}.tar.bz2
Patch: geany-0.11-01-solaris.sunstudio12.diff
Vendor: Enrico Troger,Nick Treleaven,Frank Lanitz
URL: http://geany.uvena.de/
Packager: Enrico Troger
BuildRoot: %{_tmppath}/%{name}-%{version}-build

Comments: Lines starting
with “#” symbol
This is a comment

Variables:
To be used in the
subsequent part of the spec
file. These are typically
from a Solaris.inc include
file rather than putting
directly in the spec file

Include files:
%include files may contain
variable/tag definitions
include files are picked from
<PKG_ROOT_DIR>/include
directory

Tags:
<TagName>:<TagValue>
Name: geany

Some tags are exclusive to
SVR4 and not present in
rpm. SVR4 specific tags are
as a convention made part of
Solaris.inc include file
instead of directly including
in the spec fil

https://pkgbuild.svn.sourceforge.net/svnroot/pkgbuild/spec-files-extra/trunk

#Requires: <-- Provide package dependency information (for installation)
#BuildRequires:

%description <-- multiline description tag
Geany is a small and fast editor with basic features of an
integrated development environment.

stage 1 relevant details end here

Prep-Section

%prep <--%prep makes copying of tarball, unzip/untar possible
%setup -q
./configure

%patch0 -p 1
stage 3 relevant details end here

Build-Section

%build
make
stage 4 relevant details end here

Install-Section

%install
make install DESTDIR=$RPM_BUILD_ROOT
stage 5 relevant details end here
clean = cleanup earlier files before repeating operation
%clean
rm -rf $RPM_BUILD_ROOT

%files
%defattr(-,root,bin)
%dir %attr (0755, root, bin) %{_bindir}
%{_bindir}/*

%dir %attr (0755, root, sys) %{_datadir}
%{_datadir}/doc
%{_datadir}/geany
%{_datadir}/locale
%{_datadir}/man
%{_datadir}/pixmaps

%dir %attr (0755, root, other) %{_datadir}/applications
%{_datadir}/applications/*

stage 6 relevant details end here
%changelog
* 2007.06.25 - <shivakumar dot gn at gmail dot com>
- Initial spec

===
CONGRATS : SPEC FILE IS NOW READY
===

%prep makes copying of tar-
ball and unzip/untar possible

%setup is to perform any
steps required before the ac-
tual compile/make

%patch<n> is to apply the
set of patches

%build as the name sug-
gests is for compiling/linking,
creating binaries

%install is for installing the
software in a temp location
specified by
RPM_BUILD_ROOT

%files section identifies the
dirs/files to be packaged,
their final ownership/permis-
sions and destination direc-
tories

%changelog section is for
maintaining the change log
history information

 4.Working of pkgtool/pkgbuild

4.1 Working of pkgtool 4.2 Working of pkgbuild

The working steps of pkgtool are numbered [1] to [5] in the order of occurance in figure 4.1

1. Reads the configuration rc file (~/.pkgtoolrc file) for the pkgtool environment settings.
Command line parameters maybe specified to over ride the entries in the rc file

2. Reads the provided spec file (to get the name of the source tarball and the http/ftp location)

3. Checks for the existence of source tarballs (tar.gz or tar.bz2) in the local sources directory, if
not present, downloads the sources from the http/ftp location as specified in spec file (uses
wget internally for the download). Verifies existence of the patches. Invokes pkgbuild tool once
sources are copied. Subsequent steps are performed by pkgbuild tool.

4. Executes pkgbuild tool. The pkgbuild utility creates the source and binary packages. Creates
the log file at /tmp

5. If the option to install was specified when invoking pkgtool, then the tool installs the created
binary package(s)

Throughout the above steps, pkgtool maintains a log file in logdir (as in .pkgtoolrc file or /tmp if not
specified). After completion of pkgbuild execution, pkgtool moves the pkgbuild log contents into its
own log file in the logdir (from /tmp to logdir/). If an error were to be encountered for any of the above
steps, the log file should have the necessary details to help identify the problem and troubleshoot.

The working steps of pkgbuild are numbered [1] to [7] in the order of occurance in figure 4.2

1. Reads the configuration information from the ~/.pkgbuildmacros file for the pkgbuild
environment settings. Command line parameters maybe specified to over ride the entries in the
configuration file

2. Read the spec file

3. Based on the instructions in the spec file (%prep macro) the sources are copied from the
sources directory to build directory and unzipped/untarred

4. The patches are applied to the sources (based on the %patch<n> tag in the spec file).
Preparatory steps prior to the actual build are done (as per %setup macro)

5. The sources are built as per instructions in the %build macro

6. A source package is also created. This package contains the original sources, the patchset

and the spec files.

7. A temporary installation is done (%install macro). Using the temporary installation files and the
inputs regarding the ownership, permission, destination-dirs etc from the spec file (%files list),
a package containing the binaries is created

Throughout the above steps, a log file having the details of the steps performed by pkgbuild is
maintained under the /tmp directory. If an error were to be encountered for any of the above steps, the
log file should have the necessary details to help identify the problem and troubleshoot.

 5.How to : Step-by-Step guide to your first package
The following are used for providing example details

The following is used for providing examples

Username for creating the packages : pkguser

User's home directory : /export/home/pkguser

User's default shell : bash

Software that is built: geany V0.11 (http://sourceforge.net/projects/geany)

 (Geany is an excellent light weight text editor/IDE)

 5.1.Installing the required packaging tools

 a)Create a non-root user for building packaging

Note : It is recommended not to use root user for building packages.
1. Create a user on the system that will be used for package building.

$ useradd -m -d /export/home/pkguser -s /bin/bash -c "Packing user" pkguser

2. Provide Software Installation privileges to the user by making it part of “Software Installation”
profile. This is done by adding the below line to the end of the file /etc/user_attr
<user_name>::::profiles=Software Installation
Ex: For the above created user, the line to be added is

pkguser::::profiles=Software Installation
$ echo “pkguser::::profiles=Software Installation” >> /etc/user_attr

3. Set the password for the new user and switch to the new user.

Note: All the steps provided below are performed using this(pkguser) user. Substitute the username
suitably for your case.

 b)Install the JDS Common Build Environment(JDS CBE)

1. Download the JDS CBE. Latest JDS CBE may be downloaded from
http://opensolaris.org/os/project/jds/contributing/building/#jds-cbe
http://dlc.sun.com/osol/jds/downloads/cbe
JDS CBE includes

Apache ant GNU autoconf GNU automake

GNU bison CVS GNU diffutils

GNU fileutiles GNU flex GNU gettext

http://dlc.sun.com/osol/jds/downloads/cbe
http://opensolaris.org/os/project/jds/contributing/building/#jds-cbe
http://sourceforge.net/projects/geany

GNU libtool GNU m4 GNU make

pkgbuild/pkgtool rsync subversion

2. Install the CBE as per the instructions in the README file of JDS CBE. Choose the default
options for the installation. The tools get installed at /opt/jdsbld
○ Note: Incase your SXDE version is >=B66, then edit the installation script cbe-install to

remove the SUNWsmbaS entry (at ~line 76) and then invoke the script.

Note:
● /opt/jdsbld/bin/env.sh is to be sourced as pkguser for the tools to be available with appropriate

environment settings. To make the settings available automatically on login, source the env.sh
file in the .profile file

 5.2.Setup the configuration for the packaging tools

 a)Create the configuration file for the packaging tools

Create a file .pkgtoolrc in the home directory of pkguser.
This file is used to set different options such as directories for SPECS, SOURCES, PATCHES,
LOGS, final package format, etc.
A file template maybe created using pkgtool as

$ pkgtool –dumprc > [pkguser_homedir]/.pkgtoolrc file
Modify [pkguser_homedir]/.pkgtoolrc file suitably as per the comments in the file
Parameters set for the example are as below (only uncommented lines are shown)
date_format: %y%m%d
tarballdirs: /export/home/pkguser/packages/SOURCES
logdir: /export/home/pkguser/packages/LOGS
halt_on_errors: 0
patchdirs: /export/home/pkguser/packages/PATCHES
specdirs: /export/home/pkguser/packages:/export/home/pkguser/packages/SPECS
nightly: 1
debug: 1
maintainers: /export/home/pkguser/packages/SOURCES/maintainers.txt
download_to: /export/home/pkguser/packages/REPOS
pkgformat: datastream

The output of the pkgtool --dumprc command is nicely annotated with comments for each of
the variables. Use these comments to suitable modify any additional variables or to customize
the ones mentioned in the above table.

 5.3.Author the spec file
Author the spec file in stages as detailed in the Section SPEC file structure.

At the end of each stage try out the spec file using the pkgtool using the below command:

bash-3.00$ pkgtool –download build-only SFEgeany.spec

This command tells pkgtool to download the sources if not already present in SOURCES dir and then
proceed to create the packages.

The log file generated in the logdir(as in rc file) provides the details of success/errors. Go through the
log file to get a clear understanding of the sequence of operations performed.

Note: The SPEC file and the patches that are created should go into locations as specified in the

[pkguser_homedir]/.pkgtoolrc file

At the end of this exercise, one should have a working spec using which packages can be created.
More importantly, one should have the basic understanding of how pkgtool/pkgbuild work.

 5.4.Test the output package

 a)Outputs created by pkgtool/pkgbuild

Outputs of pkgbuild that are of interest to the user are:

 Source package – for the example it is created under the
/export/home/pkguser/packages/SPKGS as SFEgeany-src.pkg

 Binary package - for the example it is created under the
/export/home/pkguser/packages/PKGS as SFEgeany.pkg

 Logs file – A logs file is created under the logdir (default it /tmp) with details of operations
performed by pkgtool/pkgbuild. This is quite useful incase there is a need for trouble shooting.
For the example it is created as /export/home/pkguser/packages/LOGS/SFEgeany.log

Note: The source & binary packages created will be in the form of a single .pkg file or a directory
containing the packaged files depending on the pkgformat parameter value specified in the rc file.

Additional outputs that are created for internal usage of pkgtool/pkgbuild

 Build directory (/export/home/pkguser/packages/BUILD) – location for untarring the sources,
patching, compiling

 PKGMAPS (/export/home/pkguser/packages/PKGMAPS) – temporary files created based on
the %files section of the spec file. The pkgmap files are required for the creation of SVR4
packages

 b)Install the package & use the software

Install the package that was created using the pkgadd command. For the software that was built in the
examples above,

Incase the package is in datastream format (.pkg file):
bash-3.00$ pkgadd –d SFEgeany.pkg

Incase the package is in filesystem format (directory):
bash-3.00$ pkgadd –d . SFEgeany

The pkgtool itself supports installation and un-installation options. See the “Useful pkgtool commands”
section for details.

 6.References
[1] http://pkgbuild.sourceforge.net

[2] http://www.opensolaris.org/os/project/jds

[3] http://www.opensolaris.org/os/project/jds/contributing/building

http://www.opensolaris.org/os/project/jds/contributing/building
http://www.opensolaris.org/os/project/jds
http://pkgbuild.sourceforge.net/

[4] http://www.rpm.org/RPM-HOWTO

http://www.rpm.org/RPM-HOWTO

 7.APPENDICES

 7.1.Useful pkgtool commands
Build the entire software stack using the available spec files. The pkgtool reads all spec files to
determine the build order, then builds and installs them one by one.

bash-3.00$ pkgtool --download build -v *.spec

Print out the build order of the packages.

bash-3.00$ pkgtool -q build-order *.spec

Download all community source tarballs needed to build SFEgeany package.

bash-3.00$ pkgtool download SFEgeany.spec

Download all the community source tarballs needed to build the SUNWgnome-panel package (one
needs to set the environmental variables http_proxy and ftp_proxy if necessary).

bash-3.00$ pkgtool download SUNWgnome-panel.spec

Download, build, and install all the packages in the correct order (one needs to set the environmental
variables http_proxy and ftp_proxy if necessary).

bash-3.00$ pkgtool –download build-install *.spec

Install packages built using SFEgeany.spec (from PKGS directory)

bash-3.00$ pkgtool install-pkgs SFEgeany.spec

Uninstall packages SUNWgnome-utils and SUNWgnome-config-editor

bash-3.00$ pkgtool uninstall-pkgs SUNWgnome-utils.spec \
 SUNWgnome-config-editor.spec

Build the SUNWgnome-img-viewer package, but don't install it (this is the option that has been used in
the step by step how-to)

bash-3.00$ pkgtool build-only SUNWgnome-img-viewer.spec

 7.2.Useful pkgbuild commands
Execute only the prep section of the spec file

bash-3.00$ pkgbuild –-short-circuit -bp SFEgeany.spec

Execute only the prep & compile sections of the spec file (patched sources should exist)

bash-3.00$ pkgbuild –-short-circuit -bc SFEgeany.spec

Execute only the install section of the spec file (compile should have completed successfully)

bash-3.00$ pkgbuild –-short-circuit -bi SFEgeany.spec

Create packages using the installed files (files already installed in $RPM_BUILD_ROOT should exist).
Note that on successful package creation, the command cleans up the temporarily installed files in
$RPM_BUILD_ROOT.

bash-3.00$ pkgbuild –-short-circuit -ba SFEgeany.spec

 7.3.Spec file authoring – conventions & good practices
Below are some conventions and good practices to follow while creating spec files:

● Setting the commonly used variables (_basedir, _prefix, _bindir, etc) in a common Solaris.inc
and include this in all spec files (refer Solaris.inc).

Refer to include files in the include directory at
https://pkgbuild.svn.sourceforge.net/svnroot/pkgbuild/spec-files-
extra/trunk

● SVR4 package specific tag definitions (SUNW_BaseDir, SUNW_ProdName, SUNW_HotLine,
etc) also needs to be done in the include file instead of the main spec file

● Patches follow the naming convention %{name}-nn-description.diff where nn indicates the
number(order) of the patch (01, 02, 03, etc), description is a meaningful word, the suffix for a
patch is always chosen to be .diff

● In the %files section,

○ %defattr should be (0755, root, bin)

○ The default permissions of the %{_datadir}'s is set to (0755, root, sys) except for %
{_datadir}/applications which is set to (0755, root, other)

○ %{_datadir}/applications/* (files under applications) will continue to have %defattr
permissions

 7.4.Topics not covered in required details
In an attempt to keep the document simple and minimal, what has been provided are basic details.

Some of the topics not covered in this document (second level bullet points provide some pointers)

● Details about package dependency, creating multiple packages using single spec file as the
entry point (Ex: foo.pkg, foo-devel.pkg & foo-man.pkg)

○ “Requires”, “BuildRequires” tags

○ “%package” tag and “%files <subpackagename>” for sub-package creation

● Command line usage of pkgtool, pkgbuild (this is necessary)

○ See the tool help output for details

○ See the section listing the useful pkgtool and pkgbuild commands

● Conventions/Guidelines to use macro definitions in include files

https://pkgbuild.svn.sourceforge.net/svnroot/pkgbuild/spec-files-extra/trunk
https://pkgbuild.svn.sourceforge.net/svnroot/pkgbuild/spec-files-extra/trunk

○ Have a look at the include files in SFE repository

● Taking care of cross platform issues during spec authoring
○ Have a look at the include files in SFE repository

---- TODO: These details should get addressed if and when the document is updated next ---

 7.5.Creating & Applying patches
Unified diff output from GNU diff utility (/opt/jdsbld/bin/diff) is to be used for creating a patch

bash-3.00$ diff -uNr foo-dir.orig foo-dir.patched > foo-01-sol12port.diff

This patch may be applied to the unmodified sources using the GNU's patch utility (/usr/bin/gpatch) in
the location where foo-dir.orig

bash-3.00$ cd foo-dir.orig
bash-3.00$ gpatch -p1 < path-to-patchfile/foo-01-sol12port.diff

 7.6.GNU Auto Tools
Some useful pointers for introductory level information

● http://developers.sun.com/solaris/articles/gnu.html - A introductory article on GNU auto tools

● http://developer.novell.com/wiki/index.php/Overview_of_GNU_Autotools – Overview of GNU
auto tools (have a look at the “Building Your Application” section)

For those who want to get into the complete details

● http://sourceware.org/autobook/autobook/autobook_toc.html – The Autobook

● http://www.gnu.org/manual/manual.html – The GNU Manuals

---------- TODO: Some basic details to be made part of this document ----------

 7.7.Build Issues on OpenSolaris platform
---------- TODO: Some background information about reasons for failure and broad hints as to where to
look for help to be added -----------

 7.8.SVR4 packaging details
---------- TODO: SVR4 packaging related details go here ----------

 7.9.Specs for pkgbuild v/s RPM Specs
---------- The differences and reasons for the same goes here ----------

~ End of Document ~

http://www.gnu.org/manual/manual.html
http://sourceware.org/autobook/autobook/autobook_toc.html
http://developer.novell.com/wiki/index.php/Overview_of_GNU_Autotools
http://developers.sun.com/solaris/articles/gnu.html

	 0.About the document
	 1.Background information to pkgbuild
	 2.Stages in Package Creation
	 3.SPEC file structure
	 4.Working of pkgtool/pkgbuild
	 5.How to : Step-by-Step guide to your first package
	 5.1.Installing the required packaging tools
	 a)Create a non-root user for building packaging
	 b)Install the JDS Common Build Environment(JDS CBE)

	 5.2.Setup the configuration for the packaging tools
	 a)Create the configuration file for the packaging tools

	 5.3.Author the spec file
	 5.4.Test the output package
	 a)Outputs created by pkgtool/pkgbuild
	 b)Install the package & use the software

	 6.References
	 7.APPENDICES
	 7.1.Useful pkgtool commands
	 7.2.Useful pkgbuild commands
	 7.3.Spec file authoring – conventions & good practices
	 7.4.Topics not covered in required details
	 7.5.Creating & Applying patches
	 7.6.GNU Auto Tools
	 7.7.Build Issues on OpenSolaris platform
	 7.8.SVR4 packaging details
	 7.9.Specs for pkgbuild v/s RPM Specs

